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The self-absorption coefficient is determined numerically from a family of em- 
pirical y-ray absorption curves for cylindrical samples of various thicknesses, 
atomic weights, and densities. 

The use of nuclear-physical methods of analysis to determine the elemental composition 
of bulk samples is complicated not only by the self-shielding effect associated with exposure 
of the samples to activating radiation, but also by the effect of induced radiation. This 
effect is particularly pronounced in the case of low-energy radiation and in the performance 
of high-precision measurements, where the measurement error cannot exceed 1-2%. 

Previous attempts have been made to calculate the total detection efficiencies of Ge(Li) 
detectors [i] as well as NaI(TI) and CsI(TI) scintillation crystals [2-4] for point, disk, 
and cylindrical radiation sources. A 0.3% error of the computational results is also indi- 
cated in [3]. However, none of these calculations takes into account the real measurement 
conditions, multiple scattering in the sample, or scattering from the detector casing and 
protective shields. The special case of self-absorption in metal samples during oxygen 
analysis has been investigated [5]. The samples usually have various geometrical dimensions, 
atomic weights, and densities; in the present study, therefore, we describe a procedure for 
taking the self-absorptionof y rays into account in cylindrical samples of equal diameter, 
but different thicknesses, atomic weights, and densities. Samples of this type are frequent- 
ly encountered in the analysis of pressed powder pellets or various finely divided objects. 

We consider the sample--detector system shown in Fig. I. The cylindrical sample is 
placed at a certain distance ho from the surface of the detector and has a thickness h = 
h, -- ho. We partition the sample into plane layers parallel to the upper plane of the de- 
tector, each with a thickness Ahi such that self-absorption can be neglected in the layer. 
The number of pulses recorded from the sample during the measurement period is 

N = Bin% (1) 

The coefficient B in Eq. (i) takes into account the activation, waiting, and measurement con- 
ditions, along with other quantities that do not depend on the geometry and absorbing proper- 
ties of the sample. The efficiency ~ of y-ray detection from the analyzed element depends on 
the geometry, atomic weight, and density of the sample. Activation analysis, as a rule, is 
concerned only with the photodetection efficiency of a single maximum-intensity line of the 
analyzed element. 

When the sample is partitioned into layers, the mass of the element in the i-th layer is 
equal to mi, and the y-ray detection efficiency from that layer is Hi. The total count under 
the photopeak of the analytical line is 

n 

N = B ~m,~l .  (2) 
1=1 

If the number of layers is increased and their thickness is decreased accordingly, 
of the i-th layer can be written in the form 

dm 
mi = Ahi ~ mhAht.  

dh 

the mass 

(3) 
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The distribution of the element in the sample can be considered uniform in the first 
approximation, i.e., m h = const, whereupon the sum in Eq. (2) can be replaced by an integral: 

N = Bmh ~ ~l (h, I~) dh. 
ho 

(4) 

The detection efficiency for the given measurement geometry will depend on the thickness of 
the sample and the linear attenuation coefficient of the y-ray analytical line. The linear 
density (mass per unit thickness) of the analyzed element can be found from Eq. (4): 

N (5) 
m h  ~ hi 

B ~  ~(h, ~)dh 
ho 

The c o e f f i c i e n t  B i n  Eq. (5) depends  on t h e  i r r a d i a t i o n ,  w a i t i n g ,  and measu remen t  c o n d i t i o n s  
and ,  a s  a r u l e ,  i s  t a k e n  i n t o  a c c o u n t  i n  a c t i v a t i o n  a n a l y s i s  by  u s i n g  a s t a n d a r d  s amp le  w i t h  
a known mass  mo. I t  can  be  made i n  t h e  f o r m  o f  a d i s k  w i t h  a d i a m e t e r  e q u a l  t o  t h e  d i a m e t e r  
o f  t h e  sample  and w i t h  a t h i c k n e s s  such  t h a t  t h e  a t t e n u a t i o n  o f  c h a r a c t e r i s t i c  r a d i a t i o n  w i l l  
n o t  e x c e e d  0 . 1 - 0 . 2 % .  The s t a n d a r d  sample  can  be  a f o i l  o f  t h e  a n a l y z e d  e l e m e n t  or  a f i l m  
c o n t a i n i n g  a known q u a n t i t y  o f  i t .  

The s t a n d a r d  s am p l e  i s  p l a c e d  a t  a h e i g h t  ho f rom t h e  d e t e c t o r ,  i n  which  c a s e  t h e  number 
o f  p u l s e s  unde r  t h e  p h o t o p e a k  i s  

No = Bmo~(ho, ~o). (6) 

I n  Eq. ( 6 ) ,  ~o can  be  t a k e n  e q u a l  t o  z e r o ,  b e c a u s e  r a d i a t i o n  i s  a t t e n u a t e d  o n l y  i n  a i r  and 
i n  t h e  d e t e c t o r  c a s i n g  and does  n o t  depend on t h e  s a m p l e .  The v a l u e  o f  B d e t e r m i n e d  f rom 
(6) i s  s u b s t i t u t e d  i n t o  ( 5 ) ,  whereupon  

N 1 (7) 
m a  = m ~  N o l a~ 

f n(h, ~) dh 
(h0, ~o) h% 

The c o e f f i c i e n t  n(ho, r does  n o t  depend on h and c a n  be  t a k e n  o u t s i d e  t h e  i n t e g r a l  
s i g n ,  so  t h a t  we o b t a i n  f o r  t h e  l i n e a r  mass d e n s i t y  o f  t h e  e l e m e n t  

N 1 (8) 
m h ~ m 0 - -  _ _  , 

No I 
where  

h~ 

I = [ n(h' ~ dh. (9) 
n (ho, ~o) 

The i n t e g r a n d  i n  Eq. (9) r e p r e s e n t s  t h e  r e l a t i v e  d e t e c t i o n  e f f i c i e n c y  f o r  t h e  i n d i v i d u a l  
l a y e r .  C o n s e q u e n t l y ,  i n  o r d e r  t o  d e t e r m i n e  i t  we p l o t  a f a m i l y  o f  e x p e r i m e n t a l  c u r v e s  ~ (h ,  
~ ) ~ = c o n s t ,  where  t h e  p a r a m e t e r  o f  t h e  f a m i l y  i s  t h e  l i n e a r  a b s o r p t i o n  c o e f f i c i e n t  ~ .  The 
g e o m e t r y  o f  t h e  m e a s u r e m e n t s  i s  t he  same as  i n  F i g .  1. 

Curves  o f  t h e  d e t e c t i o n  e f f i c i e n c y  a s  a f u n c t i o n  o f  t h e  a b s o r b e r  t h i c k n e s s  f o r  a g i v e n  
y - r a d i a t i o n  l i n e  a r e  r e c o r d e d  f o r  a number o f  a b s o r b e r s  ( a i r ,  p l a s t i c ,  a luminum,  p r e s s e d  
BaSO~, i r o n ,  c o p p e r ,  cadmium, and l e a d ) .  I f  t h i s  l i n e  b e l o n g s  t o  a l o n g - l i v e d  r a d i o n u c l i d e ,  
a s e r i e s  o f  m e a s u r e m e n t s  i s  c a r r i e d  ou t  u s i n g  t h a t  r a d i o n u c l i d e ,  which  i s  p r e p a r e d  i n  t h e  
fo rm o f  a t h i n  f l a t  s o u r c e  w i t h  a d i a m e t e r  e q u a l  t o  t h a t  o f  t h e  s a m p l e .  I f  t h e  l i n e  b e l o n g s  
to  a s h o r t - l i v e d  r a d i o n u c l i d e ,  a l o n g - l i v e d  c o u n t e r p a r t  i s  c h o s e n  w i t h  an e n e r g y  d i f f e r i n g  
5 -10  keV f rom t h e  a n a l y t i c a l .  I n  t h e  a b s e n c e  o f  a s u i t a b l e  r a d i o n u c l i d e  i t  i s  p e r m i s s i b l e  
to use three nuclei with energies differing a few tens of kiloelectron-volts from the analyt- 
ical and then to find the detection efficiency of the given line by interpolation. 

Figure 2 shows a family of curves n(h, B)~=const, corresponding to a y-radiation energy 
of 279 keV, which is associated with the radionucllde 2~ this family is used to determine 
the gold content from the isomer x'TmAu, which has the same y-radiation energy. The diameter 
of the sample is 44m m, the detector is an NaI(TI) scintillator with a diameter of 40 mm and 
a thickness of 40 mm, and the distance from the sample to the detector is ho = 12 mm. 
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Fig. i. Geometry of the sample and detector. 

Fig. 2. Family of curves of the self-absorption coefficient n 
(relative units) vs the absorber thickness h (mm) for various 
values of ~ (cm-1): I) B = O; 2) 0.120; 3) 0.255; 4) 0.475; 5) 
0.766; 6) 0.901; 7) 1.279; 8) 4.420. 

A large statistical sample is not sufficient for obtaining high measurement precision, 
because the main source of error is background-subtraction error. This error is appreciable 
in measurements on bulk samples, in which y rays suffer small-angle Compton scattering to a 
significant degree. A plateau is observed to the left of the photopeak, its height increas- 
ing with the thickness and density of the sample. An experiment has shown that the rms devia- 
tion of the results obtained for background subtraction with a sample density p = 8 g/cm s and 
a thickness of i0 mmattains 0.4% at a y-radiation energy of 0.3 MeV. Consequently, in plot- 
ing the curves n = n(h, ~) a fully sufficient number of pulses under the photopeak is N = 
(2-3).i0 s. The precision can be improved by repeating the measurement at each point or by 
processing the experimental curves on a computer using the least-squares method. 

The resulting absorption curves can be described by fourth-degree polynomials. In par- 
ticular, the curve corresponding to ~ = 0.901 cm -x and the above-indicated conditions is de- 
scribed by the polynomial 

~(h) =0.9999--1,5310.10-~h + 9 . 7 9 2 . 1 0 - a h Z - - l , 7 9 3 3 " l O - ~ h Z - - 5 . 0 6 5 9 " l O - e h ~ .  : (i0) 

The rms deviation of the description of the absorption curves by fourth-degree poly- 
nomials does not exceed 0.3% for single measurements at each point with theindicated sta- 
tistical sample. The measurement step is 1 ram. 

To facilitate the computation of the integral I we use the data of Fig. 2 to plot a 
family of curves O(~, h)h=const, where the parameter is now the thickness of the sample, and 

is the independent variable. This family, processed by the least-squares method, is shown 
in Fig. 3. The values of 9 for the absorbers must be measured with adequate precision, be- 
cause the error of handbook reference data is no better than 5% [6] and the measurement geom- 
etry in analysis is far from good. The influence of the error of determination of ~ is min- 
imal if the measurements of wand the element analysis are carried out using spectrometers 
with close values oflthe energyresolution. 

�9 0,3' ~o :f/- 

q /O ' q2 a,,4' : a,,s o,8 I,o Cz ~ 

Fig. 3. Family of curves of the self-ab- 
sorption coefficient ~ (relative units) vs 
the linear attenuation coefficient ~ (cm-*) 
for various values of h (mm): i) h = 0; 2) 
i; 3) 2; 4) 3; 5) 4; 6) 5; 7) 6; 8) 7; 9) 
8; 10) 9; 11) 10. 
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Experiments have shown that the values of ~ can be obtained with a 0.5-0.7% rms devia- 
tionduring a measurement period of the order of a few minutes, which contributes on the 
order of 0.2-0.3% to the error of determination of the detection efficiency (for a confid- 
ence interval p = 0.67). 

The integral I is computed according to the Newton--Cotes formula with n = 4. The fourth- 
degree polynomial is integrated exactly in this case. The thickness h and the coefficient 
of the sample are measured in the same geometry as in plotting the family q = n(h, ~)~=const. 
The thickness h isdivided into four equal intervals Ah, and the values obtained for the 
reference points Ah-i are used to find the values of ni(Ah'i, ~) on the family ~ = q(~, h) 
that correspond to the measured value of ~ (Fig. 3). The number of curves of this family 
must be sufficient to ensure the prescribed interpolation accuracy. The family shown in 
Fig. 3 can guarantee a 3% rms reading deviation. To obtain an rms deviation of 0.2-0.3%, it 
is necessary to plot i0 curves between each of those shown, using empirical formulas for the 
polynomials q = q(h, ~)~= const. 

The integral in (9) is computed according to the quadrature formula 

I ::  ~ (14~o -F 64~1 + 24~ + 64~13 H- 14~h), (11) 
45 

in  which ni  deno tes  the  va l ue s  of  the  e f f i c i e n c i e s  read from the  f ami ly  n = n(~,  h )h=cons t  
and corresponding to the partition points hi = Ah,i. 

The procedure described here for taking self-absorption into account has made it pos- 
sible to attain an rms analysis deviation of 1.5% in determining the macroscopic quantity of 
gold in electroplating-industrial bulk samples when all other errors of indirect measurements 
are equal. 

NOTATION 

N, count of y quanta; m, mh, mass and linear mass density of analyzed element, respec- 
tively; q, detection efficiency; i, order number of layer; n, number of layers in partition; 
h, thickness of sample; Ahi, thickness of i-th layer; ~, linear coefficient of N-ray attenua- 
tion; I, self-absorption coefficient. 
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